

XXVII Jornadas SOLACI 9° Región Andina

8 / 9 de Octubre 2015

informes: www.solaci.org (5411) 4954-7173

Alternative Vascular Access

Antonio Dager Gómez, MD

Universidad del Valle Universidad de Miami Angiografía de Occidente Cali - Colombia

Disclosure Statement of Financial Interest

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

Affiliation/Financial Relationship

Consulting Fees/Honoraria

Company

Medtronic

Percutaneous aortic valve replacement is 80% Peripheral and 20% Cardiac

Challenging Vascular Access Background

Events*	1	1 Year
	Month	
Any Stroke, %	3.9	6.7
Major, %	2.4	4.1
Minor, %	1.7	3.1
Myocardial Infarction, %	1.3	2.0
Reintervention, %	1.3	2.0
VARC Bleeding, %	35.1	41.4
Life Threatening or Disabling, %	11.7	16.6
Major, %	24.1	27.6
Major Vascular Complications, %	8.3	8.5
Permanent Pacemaker Implant, %	22.2	27.1
Per ACC Guidelines, %	17.4	19.9
* Percentages obtained from Kaplan	n Meier estimat	es 🛛
TCT 2013 L BCT Extreme Risk Stur	dy I Iliofemo	ral Divotal

Major Vascular Complications PARTNER 1 TF-Cohort A and B

Genereux P et al. J Am Coll Cardiol 2012:60:1043-52

One Year Mortality By Major Vascular Events

Devices and Mayor Vascular Events

Devices and Diameters

		SAPIEN XT (26 mm)	SAPI (26	IEN 3 mm)	Lotus (23 mm	•	CoreValve (26 mm)	Direct Flow (27 mm)	Exolut R (26 mm)
Recommend artery diame	led minimum eter	6.5 mm	5.5	mm	6 mm		6 mm	6.5 mm	5 mm
Sheath OD (unexpanded)	21.6 Fr	18	3 Fr	21.8 Fr		20.4 Fr*	21.8 Fr**	18 Fr
Sheath OD (expanded)	26.7 Fr	24	l Fr	21.8 Fr		20.4 Fr*	21.8 Fr**	18 Fr
	CoreValve [®] and CoreValve Evolut	23mr (18-20m	23mm 26 (18-20mm) (20-		6mm 0-23mm)		29mm (23-27mm)	31mm (26-29mm)	1
	AccuTrak [®] with Coc Sheath	ok (18FF	18FR 21.8FR					\Rightarrow	1
	Sapien XT TM	23mr (18-22m	23mm 20 (18-22mm) (21		6mm 29mm I-25mm) (24-27mm)		(27-29mm)		
	w/ EDW e-Sheath (<u>U</u> nexpanded and While <u>E</u> xpanded):	20.1FR (2 (16FR)	6.7FR* Max	21.6FR	26.7FR* Max	24.0	FR 29.7FR*	NA	

Vascular Access Complications

It is still a major contributor to our patients outcomes ?

- Patient-related factors 1
- **Procedural- or operator-related factors** 2.
- **Device-related factors** 3

Access Selection

Safe vs Feasible

CT Images

- 5.5x7.8 RFA min. diameter (mean 6.7)
- 6.7x7.7 REI min. diameter
- 7.0x8.3 RCI min. diameter
- x7.3 LFA min. diameter (mean 6.6)
- LEI min. diameter 7.0x7.1
- LCI min diameter 6.6x8.6

Evaluation of Tortuosity

- **3D** reconstructions particularly useful for assessment of tortuosity
- Vessels which are tortuous but not heavily calcified often can be straightened with stiffer wires
- Vessels which are tortuous and heavily calcified are not favorable for TF TAVR

(all in mm) Tortuosity: (per site) moderate- RCI, LCI/ mild- LFA, RFA. LEI

Calcification: (per site) mild-REI, LEI, RFA, LFA

Multiple Options for Vascular Access

Access Selection

Strategy

✓ Surgical cut-down
✓ General anesthesia

Illiac Access

Supra Aortic Arch Access

Femoral Access

Left Axillary Access

Supranavicular Access Carotid Access

Caval-Aortic Access Trans Venous/Septal

Femoral Vein

Yugular Vein

✓ Surgical cut-down
✓ General anesthesia
✓ Thoracotomy

Direct Aortic Access

✓ Surgical cut-down
✓ General
anesthesia
✓ Thoracotomy
✓ Ventriculotomy

Trans-apical Access

Subclavian access

Non-Femoral Access Trends

1 in 4 Patients Will Continue to Benefit From Non-TF access

BIBA Medical Quarterly TAVI Report, 2012.

Trans-Venous / Trans-Septal Delivery Approach

Trans-Venous / Trans-Septal SAPIEN in MAC Global Registry

44 patients in 8 countries (Sept 2012-April 2015) Underwent TMVR with compassionate use of SAPIEN valves Mean follow-up 5 months (1 to 32 months)

Institutions

- Aurora St. Lukes Medical Center (Milwaukee, USA)
- Bichat Hospital. Univ of Paris (Paris, France)
- Angiografía de Occidente (Cali, Colombia)
- Central Manchester Univ Hospitals (Manchester, UK)
- Henry Ford Hospital (Detroit, MI. USA)
- Heart Center Leipzig (Leipzig, Germany)
- Institute of Cardiology (Warsaw, Poland)
- King's College Hospital (London, UK)
- Laval University (Quebec, Canada)
- Mayo Clinic (Rochester, MN. USA)
- Rangueil University Hospital (Toulouse, France)
- St. Francis Medical Center (Peoria, IL. USA)
- St. Paul's Hospital (Vancouver, Canada)
- UCLA Medical Center (Los Angeles, CA. USA)
- Univ Hospital of Lausanne (Laussane, Switzerland)
- Uniersitats Klinikum Bonn
- University of Rouen's Charles Nicolle Hospital

Collaborators

- Daniel O'Nair
- > D. Himbert, M. Urena, A. Vahanian
- Antonio Dager, Pedro Martinez-Clark
- Vaikom Mahadevan
- M. Guerrero, A. Greenbaum, W. O'Neill
- David Holzhey
- A. Witkowski, M. Dabrowski, K. Kusmierski
- > Olaf Wendler, Phillip MacCarthy
- Josep Rodes-Cabau
- Eleid Mackram, Charanjit Rihal
- Nicolas Dumonteil
- Daniel Ciaburri
- Danny Dvir, John Webb
- > William Suh, G. Vorobiof, Richard Shemin
- Enrico Ferrari
- Georg Nickenig
 - Alain Cribier

Trans-Venous / Trans-Septal Techniques Mitral Annulus Sizing

- Cardiac CT best method
- Better assessment of Calcium
- Diameters and Area are helpful
- Perimeter less helpful at this time

Trans-Venous / Trans-Septal Techniques Predicting LVOT Obstruction

- Pre-existing LVOT gradient
- Aorto-Mitral angle
- Septal bulge
- Small LV cavity
- Length of anterior MV leaflet
- Size of SAPIEN valve
- Depth of implantation

When annulus size is borderline between SAPIEN sizes and risk of LVOTO is a concern, select the shorter value to decrease risk of LVOTO

Trans-Venous / Trans-Septal Techniques Predicting LVOT Obstruction

LVOT clearance systole, more ventricular

LVOT clearance, 50-50

Look at both, systole and diastole

Trans-Venous / Trans-Septal Techniques Dealing with LVOT Obstruction

Baseline

After TMVR

Alcohol Septal Ablation

Two successful rescues (US and France)

Procedural Outcomes

	n (%)
Successful Implantation/positioning	41 (93%)
LVOT obstruction with hemodynamic compromise	5 (11%)
Conversion to open surgery (emb=2, perf=1, LVOTO=1)	4 (9 %)
Valve embolization	3 (6.8%)
LV perforation (surgery=1, conservative=1)	2 (4.5%)
Pulmonary Vein Perforation	1 (2.3%)
Need for second valve (migration=2, MR=1)	3 (6.8%)

Mean Mitral Valve Gradients

30 Day Mortality

	n (%)
Cardiac	6 (13.6 %)
LVOT Obstruction	2 (4.5%)
LV Perforation	2 (4.5%)
Complete AV block	1 (2.3%)
MI due to air emboli / Pulmonary vein perforation	1 (2.3%)
Non-Cardiac	9 (20.4 %)
Multi-organ failure	5 (11.3 %)
Pneumonia	2 (4.5%)
Stroke	1 (2.3%)
Thoracentesis related bleeding complication	1 (2.3%)

Access during Mitral VinV / VinR and other Mitral procedures (n=437)

Jugular Vein

Total trans-septal n=81 (18.5%)

Direct left atrium N=11 (2.5%)

Transapical n=345 (78.9%)

T

Femoral vein

Dvir, Danny; Transcatheter Mitral Valve-in-Valve and Valve-in-Ring Implantations, TVT Chicago 2015

Transcatheter devices (n=437)

Edwards Cribier / SAPIEN / XT (Edwards Lifesciences) n= 374, 85.6%

Melody (Medtronic) n=28, 6.4% SAPIEN 3 (Edwards Lifesciences) n= 17, 3.9%

Direct Flow (Direct Flow Medical) n= 3, 0.7%

Lotus (Boston Scientific) n= 3, 0.7%

Dvir, Danny; Transcatheter Mitral Valve-in-Valve and Valve-in-Ring Implantations, TVT Chicago 2015

Combined procedures (n= 57, 13%) Mitral VIV / VIR and...

- Native aortic valve TAVI (n=22)
- Aortic valve-in-valve (n=20)
- Mitral paravalvular leak closure (n=12)
- Tricuspid valve-in-valve/ring (n=3)

Dvir, Danny; Transcatheter Mitral Valve-in-Valve and Valve-in-Ring Implantations, TVT Chicago 2015

PVL occlusion

A-VIV

Delayed malpositioning

Mitral Valve-in-Valve

After 2 months

Delayed malpositioning (>1 week) in 1.1%.

Dvir, Danny; Transcatheter Mitral Valve-in-Valve and Valve-in-Ring Implantations, TVT Chicago 2015

LVOT obstruction

3.7% in the studied population. More common after Valve-in-Ring (8% vs. 2.6% in Valve-in-Valve , p=0.03).

--200

100

Alternative Access Approaches

Alternative access routes are essential

- Subclavian
- > Axillary
- Caval-Aortic Access
- Direct Aortic
- Supranavicular

Axillary artery approach

- Advantages
- No groin access, early mobilization
- Shorter route to the valve more control
- Less manipulation in the arch
- Feasible under local anesthesia in most patients
- Option for concomitant PM implant

- Disadvantages
 - □ Requires surgical exposure
 - Subclavian artery lesions
 - Open LIMA
 - Neurologic embolic events (retrograde approach vs TA approach)
 - □ Nerve lesions

Overall Survival 2-Years

Petronio AS. Italian Experience Subclavian vs. Transfemoral. Presented at TCT 2011

CoreValve® is a registered trademark of Medtronic CV Luxembourg S.a.r.I.

Right Subclavian Access

82 Years Old Severe AS: 90 mmHg COPD DM Severe peripheral artery disease Supracondylar Amputation

Right Subclavian Access

Left Subclavian Access

Patient History: HR

> Age (y.o.): 71

Gender: M

- Height (cm): 173
- > Weight (kg): 72
- **BMI:** 1.85

RISK FACTORS AND COMORBILITIES: DM 2 HTA Coronary Artery Disease

Previous Cardiac Interventions: CABG (1994) LIMA to ADA Saphenous to OMA and saphenous to PDA PTCA + stents RCA + CX (2005) PTCA + medical stent RCA for restenosis intrastent (2014) Vascular stent graft repair of abdominal aortic aneurysm (2014) Cardiac and Hemodynamic State:

Eco Stress (Sept 2015):

- TAPSE: 1.5cm
- FEVI: 70%

	Repose	Stress
Peak Speed	3.2 m/seg	4.2 m/seg
Peak Gradient	46 mmHg	70 mmHg
Area systole Max	0.9 <i>Cm</i> ²	0.8 <i>Cm</i> ²

Left Subclavian Access

Left Subclavian Access

Complications Aneurysm subclavian artery Occlusion subclavian artery

This is the <u>WORST VASCULAR</u> <u>COMPLICATION</u>

van Schaik P, de Borst G, Moll F, TooropR. Vascular. 2014 Dec 18.

Alternative Access Approaches

Alternative access routes are essential

- Subclavian
- > Axillary
- Caval-Aortic Access
- > Direct Aortic
- Supranavicular

Background

Current US devices require large sheaths (18-24F; 9.3mm OD)

- Eliminates a significant segment of the population from the benefits of the technology women, PAD
- Vascular complications remain significant even with adequate vessel size and newer lower-profile technology
- Transapical & transaortic access also associated with significant morbidity and mortality and contraindicated in some

Transfemoral vs. Transapical TAVR

501 propensity-matched Partner trial patients

If One Can Convert a Nontransfemoral TAVR to a "Transfemoral Like" TAVR One Might Anticipate...

- > Decreased length of stay
- Faster recovery (improvement in NYHA class)
- > Improved survival
- Cost savings

Caval-Aortic Shunt Physiology

Observation of the second seco

VOLCANO

Live

Select Mode

Obtain CT-based Treatment Plan

Recommendation (CA-TAVR eligibility)	Favorable; Uncertain; Unfavorable
Aortic Ca ²⁺ / thickening / ectasia	Aortic calcium grade 2
Target entry site lumbar vertebra	Mid Body L3 (L3.0)
Orthogonal projection	AP
Caval-aortic distance X-Y	6 mm (including 1 mm non-calcified atheroma)
Interposed structures	none
Nearby structures	Bowel anterior to target
Caval lumen diameter	23 mm
Aortic lumen diameter (+3/0/-1.2cm)	15 mm / 16 mm / 14 mm
Target distance above aorto-iliac bifurcation	12 mm
Target distance below R renal artery	75 mm
Endograft bailout limb access	RCIA 5.2 mm, LCIA 3.0 mm
CFV to target centerline distance	24 cm
Caveat & Comments	15x20 mm target window
Lies flat on the CT scanner?	Yes
Reviewers NHLBI	M Chen read. 2014-xx-xx

Caval-Aortic Relationship

Simultaneous: Power inject artery below SMA Hand-inject vein simultaneously

Caval-Aortic Access - Alignment

Caval-Aortic Access -Crossing

Caval-Aortic Access – Wire Transition

Current Closure Device Algorithm

Sheath	> 18Fr ID	<= 18Fr ID	
Aorto-caval tract	8mm Amplatzer	6mm Amplatzer	
length ≤ 7mm	Muscular VSD	Muscular VSD	
	Occluder	Occluder	
Aorto-caval tract	10/8 Amplatzer Duct	8/6 Amplatzer Duct	
length > 7mm	Occluder generation 1	Occluder generation 1	

Fundamental Pathophysiology Principle

Venous sink

- A venous sink/sump is required to decompress arterial hemorrhage
- The hole in the IVC must not be occluded unless the hole in the aorta is occluded
- Only withdraw aortic sheath COMPLETELY into cava

Place buddy wire

- > Insert deflectable sheath
- > Passively expose aortic disc
- > Position pigtail
- Withdraw and deflect sheath to crossing point
- > Withdraw TAVI sheath into IVC
- > Advance pigtail cephalad & test
- > Retract disc onto R aortic wall
- Straighten Agilis during withdrawal through tract into cava
- Pull Amplatzer cable to reach cava, then push cable to re-form venous side

Completion Angiography

- Review angio before release cable and buddy wire
- > If bleeding:
 - Consider balloon aortic tamponade
 - > Consider endograft
- Close venous access site and wait 10 minutes
 Completion angiogram

Patterns of Completion Angiography

Complete occlusion

Caval-aortic fistula with long tunnel, no extravasation Caval-aortic fistula + "cruciform" extra-aortic contrast Extravasation (Endograft 7 hrs. later)

Transcaval TAVR Worldwide Experience

Center	Total	Center	Total
Henry Ford Hospital ¹ Detroit, MI	54	German Heart Center Munich, GE	2
Angiografia de Occidente ² Cali, Colombia	15	Wake Forest Baptist Health Winston Salem, NC	5
Detroit Medical Center Detroit, MI	3	Good Samaritan Cincinnati, OH	3
Spectrum Health Grand Rapids, MI	1	Edward Hospital Naperville, IL	2
Emory University Atlanta, GA	11	Cleveland Clinic Foundation Cleveland, OH	3
University of Utah Salt Lake City, UT	2	University of Virginia Charlottesville, VA	5
Oklahoma Heart Tulsa, OK	6	York Hospital York, PA	2
Brigham and Women's Boston, MA	1	Toledo Hospital Toledo, OH	2
Columbia University New York, NY	2	Total	119

Alternative Access Approaches

Alternative access routes are essential

- Subclavian
- > Axillary
- Caval-Aortic Access
- Direct Aortic
- > Supranavicular

Direct Aortic Procedure Global Registry Clinical Experience

R anterior mini-thoracotomy N = 72 (47.7%)

Upper mini-sternotomy N = 79 (52.3%)

Direct Aortic Global Registry Baseline Characteristics

Study Size	151 Patients		
Characteristics	N 82.0	SD or %	
Gender (female)	77	± 0.0 50.9%	
NYHA class ≥ III Coronary disease	132 89	87.4% 58.9%	
Prior CABG	36	23.8%	
Peripheral Vascular disease Mean Aortic Δ (mmHg) @ Echo	118 48	78.1% ± 14	
Mean Logistic Euroscore	26.1	± 16.8	

Bruschi, et al. European experience of direct aortic transcatheter aortic valve implantation with a self-expanding prosthesis:. Presented at STS 2013.

Direct Aortic Global Registry Results: 151 patients

Characteristics	Nr	SD or %
Procedural Mortality	0	
30-day Mortality	13	8.6%
In Hospital Stroke	6	3.9%
Aortic Dissection	0	
Life treating Bleeding (VARC)	7	4.6%
Conversion to Sternotomy	5	3.3%
New Pace-maker Implant	30	19.8%

Bruschi, et al. European experience of direct aortic transcatheter aortic valve implantation with a self-expanding prosthesis:. Presented at STS 2013.

Current Direct Aortic Experience

CoreValve ADVANCE Study | 30-Day Outcomes

Primary Endpoint (%)	All (N=996)	TF 88.3% (N=879)	DA 2.1% (N=21)	P-value
MACCE	8.3	7.9	4.8	0.62
All-cause Mortality	4.5	4.3	0.0	0.34
Myocardial Infarctions	0.2	0.2	0.0	0.83
Stroke	2.9	2.9	0.0	0.43
Emergent cardiac surgery or percutaneous re-intervention	1.7	1.5	4.8	0.22
Additional VARC Endpoints (%)	All (N=996)	TF 88.3% (N=879)	DA 2.1% (N=21)	P-value
Cardiovascular Mortality	3.4	3.2	0.0	0.41
Major Bleeding	9.7	9.5	19.1	0.13
Life Threatening Bleeding	4.0	4.0	4.8	0.86
Major Vascular Complications	10.7	11.2	0	0.11

AEGIS

AEGIS Procedure

Conclusions

- Options are Critical for TAVI Patient Success
 - Vascular limitations and anatomical challenges are common in the TAVI population
- Alternative Access Options are Safe and Feasible
- Subclavian and Direct Aortic Implantation Show Positive Results
 - High procedural success
 - Positive long-term outcomes
- Heart teams need the right options to achieve the best outcomes with every patient

Suprasternal direct aortic approach transcatheter aortic valve replacement avoids sternotomy and thoracotomy: firstin-man experience† <u>Kiser AC, O'Neill WW, de Marchena E, Stack</u> <u>R, Zarate M, Dager A, Reardon M</u>

Eur J Cardiothorac Surg. 2015 Jan 18

XXVII Jornadas SOLACI 9° Región Andina

8 / 9 de Octubre 2015

informes: www.solaci.org (5411) 4954-7173